Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study.
نویسندگان
چکیده
Based on density functional theory (DFT), first-principles molecular dynamics (MD), and the grand canonical ensemble Monte Carlo (GCMC) method, we investigated the boron substitution in aromatic rings of graphyne in terms of geometric and electronic structures as well as its bifunctional application including Li and H2 storage. The calculated binding energies of B-doped graphyne (BG) are significantly enhanced at two adsorptive sites compared to pristine graphyne, leading to high lithiation potentials of 2.7 V in 6Li@1BG, and even higher with 3.0 V in 6Li@3BG. Thus, 6Li@1BG with a capacity of 1125 mA h g(-1), which is much larger than other carbon materials, is proposed to be a good anode material in lithium-ion batteries. For further hydrogen storage in 6Li@nBG, the results show that it can steadily adsorb at least 8H2 in DFT, MD and GCMC computations, and the excess gravimetric H2 uptake is 7.4 wt% at ambient conditions, exceeding the 2017 DOE target. Our multiscale simulations demonstrate that chemical modifications in two-dimensional carbon structures are very promising for high lithium storage and hydrogen uptake.
منابع مشابه
Theory and practice: bulk synthesis of C3B and its H2- and Li-storage capacity.
Previous theoretical studies of C3B have suggested that boron-doped graphite is a promising H2- and Li-storage material, with large maximum capacities. These characteristics could lead to exciting applications as a lightweight H2-storage material for automotive engines and as an anode in a new generation of batteries. However, for these applications to be realized a synthetic route to bulk C3B ...
متن کاملGravimetric storage capacity of Hydrogen on C24H12 Coronene and its Si substituted at 298 K, a Monte Carlo Simulation
In this study, the radial distribution and gravimetric storage capacities of hydrogen on coronene (C24H12) and its Si substituted forms, C24H12, C24-nSinH12 (n= 4-24), have been investigated at 298 K and 0.1 MPa (standard situation) using (N,V,T) Monte Carlo simulation by Lennard-Jones (LJ) 12-6 potential. The results show that the increase of number of silicon substitution doesn’t have any eff...
متن کاملGravimetric storage capacity of Hydrogen on C24H12 Coronene and its Si substituted at 298 K, a Monte Carlo Simulation
In this study, the radial distribution and gravimetric storage capacities of hydrogen on coronene (C24H12) and its Si substituted forms, C24H12, C24-nSinH12 (n= 4-24), have been investigated at 298 K and 0.1 MPa (standard situation) using (N,V,T) Monte Carlo simulation by Lennard-Jones (LJ) 12-6 potential. The results show that the increase of number of silicon substitution doesn’t have any eff...
متن کاملBoron nitride substituted 12-crown-4 ether: Theoretical study of structural, thermochemical, and nonlinear optical properties
The structures and stability of 531 novel boron nitride substituted isomers of 12-crown-4 etherverified theoretically. For a collection of 23 selected BN isomers, structural geometry, vibrationalstability, energy gaps, natural bond population analysis, and nonlinear optical responses investigatedtheoretically. The changes of standard enthalpies for ionization reactions and electron affinityreac...
متن کاملSolution-phase synthesis of heteroatom-substituted carbon scaffolds for hydrogen storage.
This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 38 شماره
صفحات -
تاریخ انتشار 2013